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The e� ect of splay± bend elasticity on FreÂ edericksz transitions

in an annulus

P. J. BARRATT and B. R. DUFFY*
Department of Mathematics, University of Strathclyde, Livingstone Tower,

26 Richmond St., Glasgow G1 1XH, UK

(Received 1 September 1998; in ® nal form 23 December 1998; accepted 4 January 1999 )

The form of elastic free energy for a nematic liquid crystal recently proposed by Pergamenshchik
(Phys. Rev. E, 1993, 48, 1254), Faetti (Phys. Rev. E, 1994, 49, 4192), and Stallinga and Vertogen
(Phys. Rev. E, 1996, 53, 1692), which includes saddle± splay (k24 ) and mixed splay± bend (k13 )
terms, is used in a study of orientation patterns and FreÂ edericksz transitions in an annulus when
there is strong anchoring on one cylinder and weak anchoring on the other. A case involving
an azimuthal applied magnetic ® eld is considered in detail, and then threshold ® elds are given
for FreÂ edericksz transitions for several cases of ® eld orientation and initial director orientation
(radial, azimuthal or axial). In particular, it is shown that by a combination of experiments
of this type it should be possible to measure both of the elastic parameters k24 and k13 .

1. Introduction means of measuring k24 have also been proposed by
Pal� y-Muhoray et al. [9] and Barratt and Du� y [10, 11]Until relatively recently, analyses of orientation patterns

in nematics have generally neglected the in¯ uence of the in their analyses of the onset of mechanical instabilities
and FreÂ edericksz transitions in samples of nematic liquidsaddle± splay (k24 ) and mixed splay± bend (k13 ) terms in

the elastic energy proposed by Nehring and Saupe [1]. crystals con® ned in a cylinder or between concentric
cylinders.This has been due in part to the elusiveness of their

measurement, but also to a serious problem caused by An increasing interest in the e� ect of k13 is illustrated
by the recent studies of Faetti [12, 13] and Lavrentovichthe presence of k13 , called the Oldano± Barbero (OB)

paradox [2± 4]. This manifests itself in, for example, an and Pergamenshchik [14, 15], with the latter authors
reporting the ® rst experimental measurement of thisanalysis of orientation states in a static sample held

between parallel plates when there is tilt at the boundaries: material parameter. Utilizing observations of the so-called
stripe domain phase in a sub-micrometre ® lm of theenergy minimization arguments lead to a second order

di� erential equation but four boundary conditions, so nematic material 5CB in a hybrid cell, they concluded
that the system is overdetermined, and there is no that k13 is negative and approximately one ® fth the size
solution. Two of these boundary conditions are nugatory of k11 and k24 . Unfortunately, however, if one includes
if k13 = 0, showing that it is the terms in k13 that are the k13 term in the elastic energy then the continuum
responsible for the di� culties. theory can lead to a discontinuity in the director ® eld

On the other hand there is no such di� culty with at the boundaries; this again is a manifestation of the
k24 , and comparatively recent studies of orientation OB paradox.
patterns in nematics when there is weak anchoring on Possible approaches for resolving this paradox have
at least part of the boundary have resulted in its experi- been proposed by, for example, Barbero et al. [16, 17],
mental determination, by several di� erent techniques. Pergamenshchik [18], Faetti [19, 20], and Stallinga
For example, Ondris-Crawford et al. [5] employed and Vertogen [21]. The latter proposals involve the
NMR techniques to determine orientation states in sub- recognition [18] that the k13 terms involve derivatives
micrometre cylindrical cavities, while Polak et al. [6] of the director both parallel and normal to the weak
used optical measurements in super-micrometre cavities, anchoring boundary, and that it is the presence of the
and Sparavigna et al. [7] used observations of periodic normal-derivative terms that leads to the di� culties.
patterns in hybrid aligned layers. For a discussion of Pergamenshchik [18] suggests that it is only the Nehring±
these and other related papers we refer the reader to the Saupe truncation of the free energy that leads to di� culties,
extensive review by Crawford and Zumer [8]. Alternative and that by summing terms to all orders, a r̀egularized’

free energy could be obtained, with no inherent con-
tradictions. To resolve the paradox (in a way that is*Author for correspondence; e-mail: b.r.du� y@strath.ac.uk
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744 P. J. Barratt and B. R. Du� y

consistent with the assumptions of continuum theory) Here the ks are elastic constants, with
Faetti [19] proposes that the normal-derivative terms
should be excluded from the free energy that is to be k4 =

1

2
(k24 +k22 ); (5)

minimized, but should be absorbed into an e� ective
phenomenological anchoring energy; somewhat similarly

these are presumably subject to Ericksen’s [22]Stallinga and Vertogen [21], using di� erent theoretical
inequalitiesarguments, suggest that the troublesome terms should

simply be dropped altogether from the elastic energy.
k11 > k4 > 0, k22 > k4 > 0, k33 > 0 (6)

The present paper adopts the latter approach in
an analysis of the onset of FreÂ edericksz transitions in (derived for the case k13 = 0). In addition Wm and w

a cylindrical annulus, the observation of such critical denote, respectively, the magnetic/electric free-energy
phenomena potentially leading to measurements of k13 . density and the anchoring free-energy density on the
First, in §2, we obtain the appropriate form of the ® eld portion S

± of S where there is weak anchoring, there
equations and boundary conditions, by considering being strong anchoring on S± S

± (cf . [23]). In this paper
a variational principle corresponding to that used by we assume that
Pergamenshchik [18]. In §3 we present a detailed

w = w [(m ¯ n)2, (te ¯ n)2 ], 2Wm = Õ xa (n ¯ H )2 Õ x)H ¯ Hanalysis of the non-linear static equations for a particular
type of non-uniform solution when the ìnitial’ director (7)
orientation is everywhere radial and the applied magnetic
® eld is azimuthal, it being assumed that there is strong where m is the unit outward normal to S, t

e is a unit vector
homeotropic anchoring at the inner cylindrical boundary tangential to S

± that speci® es the preferred orientation at
and weak anchoring at the outer cylinder. A linear stability S

± (the so-called easy axis), H is the applied magnetic
analysis of the dynamic equations for this arrangement ® eld, x) is the magnetic susceptibility perpendicular to
is given in §4, and in particular the threshold ® eld the molecular axis of the nematic material and xa is the
for the instability of the radial orientation pattern is anisotropic part of the magnetic susceptibility. With a
derived; corresponding results concerning threshold values simple application of Gauss’ theorem, equation (2) may
for FreÂ edericksz transitions for a further three similar be rewritten as
arrangements are stated, and the dependence of these
on k24 and k13 is discussed.

E = PV
(Wb+Wm ) dV + PS

( fs+w ) dS (8)

2. The variational principle with w de® ned only on the portion S
± of S, and with

Here we consider static, isothermal states of an
incompressible nematic liquid crystal, and assume that fs = m ¯ {k4 [(n ¯ = )n Õ n (= ¯ n)]+k13 n (= ¯ n)}. (9)
the local anisotropy is described by a director n of ® xed

Dubois-Violette and Parodi [24], Faetti and Virga [25]magnitude and normalised by
and Faetti [26] have argued that curvature-dependent
contributions to the surface energy can also be important;n ¯ n = 1. (1)
we have neglected the e� ects of such contributions here.

With the form of the free-energy density proposed by Following Pergamenshchik [18] and Stallinga and
Nehring and Saupe [1], the total energy associated with Vertogen [21] we now write
a static sample of material of volume V and bounded

fs = fsd
+ fs) (10)by a surface S is given by

where
E = PV

Wb dV + PV
Ws dV + PSÕ

w dS+ PV
Wm dV (2)

fsd
= m ¯ {k4 [(n ¯ = )n Õ n (= ¯ n)]

+k13 n[= ¯ n Õ m ¯ (m ¯ = )n]} (11)where

fs)= k13 (m ¯ n) m ¯ (m ¯ = )n. (12)
2Wb = k11 (= ¯ n)2 +k22 (n ¯ = Ö n)2 +k33 (n Ö = Ö n)2

Referred to a ® xed set of rectangular Cartesian coordi-(3)
nates x i , the components of the position vector x of a

and point on S have the parametric representation

x i = x i (u
a

) (13)Ws = = ¯ {k4 [(n ¯ = )n Õ n (= ¯ n)]+k13 n (= ¯ n)}. (4)
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745FreÂ edericksz transitions in an annulus

and the associated tangent vectors ta and metric tensor and using the divergence theorem and the result (21) we
can rewrite this in the formaab are de® ned by

dE = PVCqWb

qn i
Õ AqWb

qn i, jB, j
+

qWm

qn i Ddn i dVta =
qx

qu
a , ta i =

qx i

qu
a , a a b = x i,a x i, b . (14)

Standard Cartesian tensor notation is employed in this + PSCnj
qWb

qn i, j
+

qw

qn i
+

q fsd
qn i

+
q fs)
qn i Ddn i dS

paper, so that Latin subscripts on tensor quantities take
the values 1, 2 and 3. Also, Greek indices on the surface
parameters u

a

take values 1 and 2, and a comma pre- + PS

q fsd
qn i,k

a
a b

tak tb j dn i, j dS+ PS

q fs)
qn i,k

nknj dn i, j dS.
ceding a Greek subscript denotes partial di� erentiation
with respect to the corresponding surface parameter. (23)
Moreover, the summation convention applies to a

We now note thatrepeated Greek index occurring once as a subscript and
once as a superscript. Under a change of parameters, q fsd

qn i,k
a

a b

tak tb j dn i, ja ab transforms as a second-order covariant tensor and,
assuming that det(a ab )> 0 , we de® ne

=
q fsd
qn i,k

a
a b

tak
q(dn i )

qu
bJ = (det(a a b ))1/2 ; (15)

the associated contravariant tensor a
a b is de® ned by

=
1

J

q
qu

b AJ
q fsd
qn i,k

a
a b

takdn iB Õ
1

J

q
qu

b AJ
q fsd
qn i,k

a
a b

takBdn i

a
acacb = d

a

b (16)

where d
a

b is the surface Kronecker delta. Employing the = Aq fsd
qn i,k

a
a b

takdn iB;b
Õ a

a b Aq fsd
qn i,k

takB;b
dn i (24)

identity
where a semi-colon preceding a Greek subscript denotes

d ij = a
a b

ta i tb j +ni nj (17) a surface covariant derivative. The surface divergence
theoremwe are able to rewrite fsd and fs) in the forms

fsd
= k4 a

a b

n i ta j nk, j (nk tb i Õ ni tb k ) PS
X

b

;b dS= PS

1

J

q
qu

b (J X
b

) dS= Q C
X

b

mb dsC (25)

+k13 nj n j n i,ka
a b

ta i tb k (18)
(where ma is the unit outward normal to the curve C

fs)= k13 np np nj nk n j ,k (19) bounding a surface S and sC is arc-length on C ) gives
immediately

and we observe that

PSAq fsd
qn i,k

a
a b

takdn iB;b
dS = 0 (26)

nk
q fsd
qn i,k

= 0, tak
q fs)
qn i,k

= 0. (20)
(since S is closed), and so after substitution of
equation (24) into (23) we may write dE in the formThus fsd and fs) relate to derivatives of n that are purely

tangential or normal to S, respectively, and by equations
(10), (17) and (20) we have dE = PVCqWb

qn i
Õ AqWb

qn i, jB, j
+

qWm

qn i
+ln iDdn i dV

q fs

qn i, j
=

q fsd
qn i,k

a
a b

tak tb j +
q fs)
qn i,k

nj nk . (21) + PSCnj
qWb

qn i, j
+

qw

qn i
+

q fsd
qn i

To determine the equilibrium director ® eld we mini-
Õ a

a b Aq fsd
qn i,k

takB;b
Õ cn iDdn i dSmize E via the calculus of variations. The ® rst variation

in E is

+ PSCq fs)
qn i

dn i+
q fs)
qn i,k

nknj dn i, jDdS (27)
dE = PV CqWb

qn i
dn i+

qWb

qn i, j
dn i, j +

qWm

qn i
dn iDdV

where l and c are Lagrange multipliers arising from the
constraint (1) (and where again w is de® ned only on S

± ).+ PSCq fs

qn i
dn i+

q fs

qn i, j
dn i, j +

qw

qn i
dn iDdS (22)

Finally, adopting the hypothesis that the surface elastic
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746 P. J. Barratt and B. R. Du� y

free energy density cannot depend on the derivative of situation in which the initial director orientation is every-
where radial and a magnetic ® eld H is applied in thethe director ® eld normal to the surface (cf . Faetti [19]

and Stallinga and Vertogen [21]), we drop the terms in azimuthal direction. Referred to a system of cylindrical
polar coordinates r, w , z with the axis of the cylindersfs) . We thus ® nd from equation (27) the result that we

have been seeking, namely that the equilibrium director coincident with the z axis, the magnetic ® eld has physical
components of the form® eld n is the solution of the ® eld equations

H r = 0, H w= H r1 / r, H z = 0 (32)AqWb

qn i, jB, j
Õ

qWb

qn i
Õ

qWm

qn i
= ln i (28)

where H is a constant (with the physical dimensions of
magnetic ® eld). For this arrangement it seems reasonablethat satis® es the boundary conditions to seek director± ® eld solutions whose physical components
have the form

nj
qWb

qn i, j
+

qw

qn i
+

q fsd
qn i

Õ a
a b Aq fsd

qn i,k
takB;b

= cn i on S
±

n r= cos h(r), nw= sin h(r), nz = 0, 0 < h < p/2

(29) (33)

whereupon equation (28) eventually reduces toand

n i prescribed on S Õ S
± . (30)

f (h)
d2

h

dr
2 +

1

2

df

dh Adh

drB2

+
1

r
f (h)

dh

dr
+

c

r
2 sin h cos h= 0

Thus the proposal for resolving the OB paradoxÐ namely,
dropping terms in fs) in equation (10)Ð is successful in (34)
that the theory has led to an apparently well-posed

wheresystem (28)± (30) (whereas the original Nehring± Saupe
form for E would have led to an overdetermined system, f (h)= (k11 /k33 ) sin2

h+cos2
h,

c = (k11 Õ k33 +xa H
2
r

2
1 )/k33 .

(35)with additional boundary conditions that involve fs) ).
Equation (28) is equivalent to equation (A10) of

[18] and to equation (13) of [19], and equation (29) Strong anchoring on the inner cylinder requires
is equivalent to equation (14) of [19], based on

h(r1 )= 0 (36)equation (A11) of [18] (obtained using di� erent physical
arguments). In the Appendix we show that the above while the condition (29) for weak anchoring on the
formulation is also equivalent to that of Stallinga and outer cylinder reduces, after some algebra, to
Vertogen [21], derived in terms of angles h and w

satisfying f (h)
dh

dr
= b

sin h cos h

r
on r = r2 (37)

n = (sin h cos w , sin h sin w , cos h). (31)
where

However, for the problems that we now go on to
consider, we have found the forms (28) ± (30) much easier b =

1

k33 Ck11 Õ k33 +2k13 +2r2 Aqw

qa
Õ

qw

qt BD (38)
to use (though this choice is, of course, a matter of
personal preference) .

withLastly we may note (as an additional check) that
setting k13 = 0 in the above formulation leads (after a = (m ¯ n)

2
, t = (t

e ¯ n)2 ; (39)
lengthy algebra) to the same ® eld equations and surface

here the easy axis t
e on r = r2 is taken to be azimuthal,boundary conditions as those derived by Jenkins and

and the terms qw /qa and qw /qt in equation (38) areBarratt [23] using a rather di� erent and more general
evaluated with a = cos2

h0 and t = sin2
h0 , where h0 isapproach in formulating the variational principle.

h(r2 ). We note that b depends on k13 but not on k24 .²
It is worth remarking that use of the modi® ed form of

3. Solutions of the non-linear equilibrium equations: the energy E (with terms in fs) dropped) has, as expected,
a nematic sample in an annulus led to a well-posed mathematical system, comprising a

Using the above theory we now investigate the onset second order di� erential equation (34) and just two
of FreÂ edericksz transitions in a sample of nematic liquid
crystal con® ned between two coaxial circular cylinders
of radii r1 and r2 (> r1 ) when there is strong homeotropic ² Also c in equation (35) is independent of both k13 and k24 ;
anchoring at the inner cylinder and weak anchoring this is simply a consequence of the fact that Wb and Wm in (28)

are independent of these parameters.at the outer cylinder. In particular, we consider the
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747FreÂ edericksz transitions in an annulus

boundary conditions (36) and (37) (whereas the Nehring± We must now determine the critical value H c of the
applied magnetic ® eld at which a smooth transition fromSaupe form would have led to an overdetermined system,

with four boundary conditions). the uniform radial orientation to a distorted state is
possible. With the change of variable h � l de® ned byThe ùniform’ orientation pattern

h(r) = 0 (r1 < r < r2 ) (40)
sin h= p sin l, p = C1 +

d
2 cos2

h0

h (1 +m sin2
h0 )D1/2

sin h0

is obviously one possible solution of equation (34) which
also satis® es the boundary conditions (36) and (37). (50)
However, non-uniform patterns of the form (33) are also

equation (48) becomespossible, as we now show. With the change of variable

r = r1 exp(l s), l = ln(r2 / r1 ) (41) Pl0

0
h Õ

1/2 A1 +mp
2 sin2

l

1 Õ p
2 sin2

l B1/2

dl= 1 (51)
we seek non-trivial solutions of

where
f (h)

d2
h

ds
2 +

1

2

df

dh Adh

dsB2

+
1

2
cl

2 sin 2h= 0 (42)
sin l0 =

sin h0

p
= C1 +

d
2 cos2

h0

h (1 +m sin2
h0 )DÕ 1/2

. (52)
subject to the conditions

Then by taking the limit as h0 � 0 (so that p � 0) in
h= 0 on s = 0 (43) equation (51) we ® nd that the critical ® eld is given

implicitly by the equationand

h
1/2
c = sin Õ

1A1+
d

2

hcBÕ 1/2

. (53)f (h)
dh

ds
= bl sin h cos h on s = 1 . (44)

Integrating equation (42) and using (44) we obtain The relation (53) between d and hc is shown as (part of )
the curve in ® gure 1 of [10], with b there replaced by
Õ d here. The threshold ® eld hc is a monotonic-decreasingAdh

dsB2

= Cd
2 cos2

h0 sin2
h0

1 +m sin2
h0

+h (sin2
h0 Õ sin2

h)D function of d, satisfying hc � p
2
/4 as d � 0, and hc � 0

as d � 1; thus with d > 0 and hc> 0 here, we see thatÖ (1 +m sin2
h)Õ

1

equation (53) is valid for 0< d < 1 and 0< hc< p
2
/4.

; F (h, h0 , h ) (45) Presumably, of the two possible solutions (40) and
(47), the con® guration having the smaller energy is thewhere
one likely to occur, and so we follow Dafermos [27]

d = bl , h = cl
2
, m = (k11 /k33 ) Õ 1 , h0 = h(1 ). in comparing the total energies associated with each

solution. Denoting the total energy associated with the(46)
distorted solution (47) by e(h0 ) and that associated with

Two distinct types of distortion are possible depending the uniform radial alignment by e(0 ), we ® nd (after some
on the sign of b; here for the sake of brevity we algebra) that over unit length of the cylinders
concentrate our attention on just one case, namely that

De ; e(h0 ) Õ e(0 )when b > 0. In this event, it follows that the monotonic
distortion given by

=
pk33 h

1/2
t

l sin2
l0 Pl0

0 Asin2
l0 +mt sin2

l

sin2
l0 Õ t sin2

l B1/2

cos 2l dl

s = P h

0
[F (y, h0 , h )] Õ

1/2 dy (0 < s < 1 ) (47)
+(k33 Õ k11 Õ 2k13 )pt+2pr2 [w (h0 ) Õ w (0 )] (54)

with h0 determined by where

1 = P h0

0
[F (h, h0 , h )] Õ

1/2 dh (48) l0 = sin Õ
1 C (1 +mt)h

(1 +mt)h +d
2
(1 Õ t)D1/2

, t = sin2
h0 .

is a solution of equations (42) ± (44) provided that (55)
F (h, h0 , h ) in (45) is non-negative for all possible values

The distorted state will occur in preference to theof h. A su� cient (though not necessary) condition for
purely radial orientation if De in (54) is negative for allthis to be true is that h > 0, that is
h0 . Unfortunately we have been unable to prove that
this is so; instead we content ourselves with establishingxa H

2
r

2
1 > k33 Õ k11 . (49)
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748 P. J. Barratt and B. R. Du� y

a necessary condition for De to be negative in a for the physical problem described in §3. We wish to
determine the threshold ® eld H c at which the aboveneighbourhood of h0 = 0 .

Di� erentiation of equations (51) and (52) with respect state (61) undergoes a FreÂ edericksz transition when a
magnetic ® eld of the form (32) is applied. To this endto t leads to the results
we consider the stability of this basic state with respect
to small-amplitude perturbations n1 and v1 which dependAdh

dtBt=0
=

(m +1 )(hc+d
2
)(4h

1/2
c Õ sin 4h

1/2
c )

4 (2h
1/2
c Õ sin 2h

1/2
c )

(56)
only on the radial coordinate and time t and whose
physical components have the formand

n1 = (nw(r)ew+nz (r)ez ) exp(st ),

v1 = (vw(r)ew+ v z (r)ez) exp(st )
(62)Adl0

dt Bt=0
=

(m +1 )d

4h
1/2
c A1 +

4h
1/2
c sin2

h
1/2
c

2h
1/2
c Õ sin 2h

1/2
c B (57)

(and with which the no-slip condition on r = r1 andwith hc as in (53). Clearly both of these quantities are
r = r2 , the strong-anchoring condition on r = r1 and thepositive, showing that h and l0 are monotonic-increasing
weak-anchoring condition on r = r2 are still satis® ed).functions of h0 in the neighbourhood of h0 = 0. Also
In equation (62) s is the growth rate, and the basic statefrom equation (54) we have³
(61) is unstable if Re (s)> 0 . If one now makes the
reasonable assumption that there is an exchange ofAdDe

dt Bt=0
= 0 (58)

stabilities at the critical ® eld¶, then s= 0 at the threshold.
It follows that nz , vw and vz must be identically zero,and
and hence the linearized problem reduces to that of
solvingAd2

De

dt
2 Bt=0

= Õ
pk11 (hc +d

2
)
2

16l h
3/2
c

(4h
1/2
c Õ sin 4h

1/2
c )

d2
nw

dr
2 +

1

r

dnw

dr
+ c

nw

r
2 = 0 (63)

+2pr2Ad2
w

dt
2 Bt=0

. (59)
subject to the boundary conditions

We therefore anticipate that the distorted state will
nw= 0 on r = r1 (64)

occur at H = H c provided that the right hand side of
and(59) is strictly negative. Note that this expression

involves a second derivative of w ; this is zero if w has
the Rapini± Papoular form r

dnw

dr
= bnw on r = r2 (65)

w =
1

2
w0 (1 Õ (m ¯ n)2 )=

1
2

w 0 t (60) where c and b are as in equations (35) and (38), respectively
(and t

e is again taken to be azimuthal). Use of the
(where w0 is a constant), so in that case (d2

De/dt
2
)t=0< 0, change of variable (41) yields the constant-coe� cient

implying that the distorted state will occur. However, equation
with other forms of w the term (d2

w /dt
2 )t=0 may be

non-zero, and could presumably be positive or negative. d2
n

ds
2 +hn = 0 (66)

4. A linear stability analysis with
A uniform static radial orientation, with director and

velocity ® elds of the form n = 0 on s = 0 (67)

n0 = er , v0 = 0 (61) and

is one obvious solution of the Ericksen± Leslie continuum dn

ds
= dn on s = 1 (68)equations§ together with appropriate boundary conditions

where n is nw, and h and d are de® ned in equation (46).
³ The results in equations (58, 59) were obtained essentially This is a classic eigenvalue problem and for a non-trivial

by expanding h , l0 and De as Maclaurin series in t and then
reading o� the appropriate coe� cients of t and t

2 ; the tedious
calculations were done using the symbolic manipulation package
Mathematica.

§The form of these dynamic equations that we employ are ¶For some cases mentioned later one can prove that an
exchange of stabilities occurs at the threshold ® eld.as given in [10], for example, and need not be repeated here.
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749FreÂ edericksz transitions in an annulus

solution one ® nds that the critical ® eld H c is given by and, as we have seen above, if n0 = er and H = H (r1 / r)ew
then

d = G (Õ h )
1/2 coth[(Õ h )

1/2 ] if h < 0

1 if h = 0

h
1/2 cot(h1/2 ) if h > 0;

(69)
h =

l
2

k33
(xa H

2
r

2
1 +k11 Õ k33 )

d =
l

k33Ak11 Õ k33 +2k13 +2r2
qw

qa
Õ 2r2

qw

qt B.

(73)

the form of this relation between d and h is illustrated
Again the threshold ® elds in all these cases can be shownin ® gure 1 of [10] (with Õ b there replaced by d here).
(after lengthy algebra) to agree with the threshold resultsFor prescribed values of the radii r1 and r2 , the material
obtained from the corresponding non-linear analysis.parameters xa , k11 and k33 , and the anchoring constants
Also these results agree exactly with those of Barrattqw /qa and qw /qt, equation (69) gives the relationship
and Du� y [11] for the case when k13 = 0 (and t

e= ew).between k13 and the critical magnetic ® eld H c at which
In practice a radial electric ® eld E = E 0 (r1 / r)er will beone expects the onset of a FreÂ edericksz transition; thus

easier to establish than a radial magnetic ® eld; in thatthe measurement of H c will determine k13 , provided that
case the threshold ® eld is again determined by expressionthe above parameters are known. As a check on the results
(69), but with xa H

2 in (70) and (71) replaced by ea E
2
0 ,

we observe that the non-linear solution considered in
where ea is the dielectric anisotropy. (Of course, thedetail in §3 corresponds to the case h > 0 and that
e� ects of an electric ® eld on a liquid crystal can beequation (53) relating k13 and H c is equivalent to (69) more complex than those of a magnetic ® eldÐ forin this case. example, ¯ exoelectricity and ionic conduction can

To complete this section we simply state without proof become signi® cant; such e� ects are neglected here.)
the corresponding threshold results of linear stability We note that d in equations (70), (71) and (73)
analyses for three similar problems with di� erent initial depends on k13 , but d in (72) does not; similarly d in
orientations and di� erent directions of the magnetic (71) and (72) depends on k24 , but d in (70) and (73)
® eld, namely an azimuthal orientation with a radial does not. Also h in (70) ± (73) is independent of both k13magnetic ® eld, and an axial orientation with either a and k24 . These observations imply that k13 and k24 can
radial ® eld or an azimuthal ® eld. In each case, the linear be s̀eparated out’ in experiments of the type described
problem for the perturbation component n of the director herein, and so a combination of such experiments could
parallel to the applied ® eld reduces again to that of in principle be used to measure both of these parameters.
solving equations (66)± (68), and hence the (reduced)
threshold ® eld h is again given by the relation (69), with 5. Summary and discussion
the appropriate interpretation of h and d, as follows. The strategy of dropping terms in fs) from the elastic

If n0 = ew and H = H (r1 / r)er then energy has apparently led to a self-consistent continuum
theory for nematics that retains mixed splay± bend
elasticity. Using this theory we have presented a catalogue
of the threshold magnetic ® elds required to induce

h =
l

2

k11
(xa H

2
r

2
1 +k33 Õ k11 ),

d =
l

k11 Ak33 Õ k11 Õ 2k13 +2r2
qw

qt
Õ 2r2

qw

qa B;

(70) FreÂ edericksz transitions in a nematic sample con® ned
to a cylindrical annulus, for various con® gurations of
initial director pattern and of the applied ® eld, when
there is strong homeotropic anchoring on the innerif n0 = ez and H = H (r1 / r)er then
cylinder and weak anchoring on the outer cylinder. The
threshold ® elds are given implicitly by expressions (69),
with h and d as in (70) ± (73) for the di� erent cases.

The initial orientation states considered herein can
h =

l
2

k11
(xa H

2
r

2
1 Õ k11 ),

d =
l

k11A2k4 Õ 2k13 Õ k11 Õ 2r2
qw

qa B;

(71)
potentially be subject to a so-called mechanical instability,
in which the system distorts away from the simple radial,
azimuthal or axial orientation even when there is no
applied magnetic ® eld. This occurs if, for given valuesif n0 = ez and H = H (r1 / r)ew then
of r1 and material parameters, the outer radius r2 exceeds
a critical value rc ; it is thus necessary in an experiment

h =
l

2

k22
(xa H

2
r

2
1 Õ k22 ), d =

l

k22A2k4 Õ k22 Õ 2r2
qw

qt B; to ensure that this value is not exceeded (for otherwise
the desired initial state cannot be achieved). Equations
determining the values of rc for the di� erent cases are(72)
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750 P. J. Barratt and B. R. Du� y

detailed in the Appendix of Barratt and Du� y [11], and which shows that the ® eld equation (28) is equivalent
to the familiar formneed not be repeated here. (The coe� cients bI, bII, ¼ , bVI

in that Appendix are to be supplemented by the terms
in d involving k13 , exactly as in equations (70) ± (73) AqWb

qh
A
, i B, i

Õ
qWb

qh
A Õ

qWm

qh
A = 0 in V . (76)

above.)
Estimates of the typical electric currents required to Now consider the quantitygenerate ® elds of the necessary strengths are given by

Strigazzi [28] and by Barratt and Du� y [10, 11].
WA = nj

qWb

qh
A
, j

+
qw

qh
A +

q fsd
qh

A Õ
1

J

q
qu

b AJa
a b

tak
q fsd
qh

A
,kB.Potentially, the temperature of the sample could become

large due to Joule heating. In an experiment it would
(77)be necessary to take measures to p̀rotect’ the sample,

presumably by an appropriate arrangement of cooling
With the above identities we havedevices and thermal insulators. Note however that if the

radius r2 is near to (but below) the critical value rc for
WA = nj

qWb

qn i, j

qn i

qh
A +

qw

qn i

qn i

qh
A +

q fsd
qn i

qn i

qh
A +

q fsd
qn i, j

q2
n i

qh
Aqh

B h
B
, ja mechanical instability, then only a small ® eld will be

needed to p̀ush’ the system into a distorted mode; thus
only a relatively small electric line current would be

Õ
1

J

q
qu

b AJa
a b

tak
q fsd
qn ik

qn i

qh
AB (78)

needed to induce a transition, thereby reducing the e� ect
of Joule heating.

which leads to

Appendix
WA = Cnj

qWb

qn i, j
+

qw

qn i
+

q fsd
qn i

Here we show that the weak-anchoring boundary
condition (29) is equivalent to that proposed by Stallinga
and Vertogen [21].

Õ
1

J

q
qu

b AJa
a b

tak
q fsd
qn i,kBD qn i

qh
A +Y A (79)Suppose that n is represented in terms of two angles

h
1 and h

2, so that
where

n = n (h
1
, h

2 ) with
qn

qh
1 Ö

qn

qh
2 Þ 0. (74)

YA = C q2
n i

qh
Aqh

B h
B
,k Õ a

a b

tak
q

qu
b Aqn i

qh
ABD q fsd

qn i,k
. (80)

Then we have the following identities:
Thus

n i
qn i

qh
A = 0, n i, j =

qn i

qh
A h

A
, j

YA = [d j k Õ a
a b

tak tb j ]
q fsd
qn i,k

q2
n i

qh
Aqh

B h
B
, j (81)

qWb

qh
A =

qWb

qn i

qn i

qh
A +

qWb

qn i, j

q2
n i

qh
Aqh

B h
B
, j ,

qWb

qh
A
, j

=
qWb

qn i, j

qn i

qh
A where use has been made of the result

q
qu

b Aqn i

qh
AB=

q2
n i

qh
Aqh

B
qh

B

qu
b

=
q2

n i

qh
Aqh

B
qx

j

qu
b

qh
B

qx
jAqWb

qh
A
, j B, j

= AqWb

qn i, jB, j

qn i

qh
A +

qWb

qn i, j

q2
n i

qh
Aqh

B h
B
, j

=
q2

n i

qh
Aqh

B tb j h
B
, j . (82)qWm

qh
A =

qWm

qn i

qn i

qh
A ,

qw

qh
A =

qw

qn i

qn i

qh
A

Therefore by the identity (17) and then by the resultq fsd
qh

A =
q fsd
qn i

qn i

qh
A +

q fsd
qn i, j

q2
n i

qh
Aqh

B h
B
, j ,

q fsd
qh

A
, j

=
q fsd
qn i, j

qn i

qh
A (20) we have successively

where su� xes A and B take values 1 or 2. (The ® rst of YA = nj nk
q fsd
qn i,k

q2
n i

qh
Aqh

B h
B
, j = 0. (83)

these identities comes from the constraint (1), and the
others come from the chain rule.) It thus follows that Thus by (79) we see that equation (29) is equivalent to

WA = 0, that isAqWb

qh
A
, i B, i

Õ
qWb

qh
A Õ

qWm

qh
A

nj
qWb

qh
A
, j

+
qw

qh
A +

q fsd
qh

A Õ
1

J

q
qu

b AJa
a b

tak
q fsd
qh

A
,kB= 0 on S

± .

= CAqWb

qn i, jB, j
Õ

qWb

qn i
Õ

qWm

qn i
Õ ln iD qn i

qh
A (75)

(84)
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